
CENG3430 Rapid Prototyping of Digital Systems

Lecture 07:

Rapid Prototyping (I) –

Integration of ARM and FPGA

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk


Outline

• Rapid Prototyping with Zynq

• Rapid Prototyping (I): Integration of ARM and FPGA

– PART 1: IP Block Design (Xilinx Vavido)

 IP Block Creation

 IP Integration

 HDL Wrapper

 Generate Bitstream

– PART 2: ARM Programming (Xilinx SDK)

 ARM Programming

 Launch on Hardware

• Case Study: Software Stopwatch

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 2



Zynq Features

• The defining features of Zynq family:

– Processing System (PS): Dual-core ARM Cortex-A9 CPU 

– Programmable Logic (PL): Equivalent traditional FPGA

– Advanced eXtensible Interface (AXI): High bandwidth, 

low latency connections between PS and PL.

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 3



Prototyping with FPGA: PL Only

• However, so far, our designs are implemented only

using the programmable logic of Zynq with VHDL.

• It is usually hard to implement complicated design!
CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 4

.vhd



Key to Rapid Prototyping

• PL and PS shall each be used for what they do best.

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 5

Hardware/Software

Partitioning!



PL-

side

I/Os

PS-side

I/Os

Rapid Prototyping with Zynq: PS + PL

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 6

PS for Software:                  
general purpose 

sequential programs, 

operating system, 

GUIs, applications, etc.

PL for Hardware: 
intensive data 

computation, PL-side 

peripheral control, etc.

AXI:
a means of 

communication 

between PS & PL.

AXI

A
X

I
In

te
rc

o
n

n
e
c
t

IP Block

VHDL

Entity

Note: AXI stands for Advanced eXtensible Interface.



Prototyping Styles with Zynq ZedBoard

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 7

Xilinx

Vivado

(HDL)

hardware

Program

Logic

(PL)

Process

System

(PS)

software

Programmable

Logic Design

Style 1)                     

FPGA (PL)

VHDL or Verilog 

Programming

Hardware Base 

System

Board Support 

Package

Bare-metal 

Applications

Xilinx

SDK

(C/C++)

Style 2)                                

ARM + FPGA

ARM Programming 

& IP Block Design

Hardware Base 

System

Board Support 

Package

Operating 

System

Applications
SDK

(Shell, C, 

Java, …)

Style 3) 

Embedded OS

Shell Script 

Programming



Outline

• Rapid Prototyping with Zynq

• Rapid Prototyping (I): Integration of ARM and FPGA

– PART 1: IP Block Design (Xilinx Vavido)

 IP Block Creation

 IP Integration

 HDL Wrapper

 Generate Bitstream

– PART 2: ARM Programming (Xilinx SDK)

 ARM Programming

 Launch on Hardware

• Case Study: Software Stopwatch

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 8



Integration of ARM and FPGA (1/2)

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 9

Hardware Base 

System

Board Support 

Package

Operating 

System

Applications

Hardware Base 

System

Board Support 

Package

Bare-metal 

Applications

Xilinx

Vivado

(HDL)

Xilinx

SDK

(C/C++)

hardware

Program

Logic

(PL)

SDK

(Shell, C, 

Java, …)

Process

System

(PS)

software

Programmable

Logic Design

Style 1)                     

FPGA (PL)

VHDL or Verilog 

Programming

Style 2)                                

ARM + FPGA

ARM Programming 

& IP Block Design

Style 3) 

Embedded OS

Shell Script 

Programming



ARM 

Programming 

Integration of ARM and FPGA (2/2)

• To integrate ARM and FPGA, we need to do:

1. “IP Block” Design on Xilinx Vivado using HDL

2. ARM Programming on Xilinx SDK using C/C++

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 10

IP Block Design



Intellectual Property (IP) Block

• IP Block (or IP Core) is a hardware specification 

used to configure the logic resources of an FPGA.

– IP allows system designers to pick-and-choose from a wide 

array of pre-developed, re-useable design blocks.

– IP saves development time, as well as provides guaranteed 

functionality without the need for extensive testing.

• An Analogy:

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 11

Why reinvent 

the wheel? 



Sources of IP Block 

• IP Libraries: Xilinx provides an extensive catalogue 

of IP cores for the Zynq-7000 AP family.

– Ranging from building blocks (such as FIFOs and 

arithmetic operators) up to fully functional processor blocks.

• Third-party IP is also available, both commercially 

and from the open-source community.

• IP Creation: The final option is to create by yourself.

– The most traditional method of IP creation is for it to be 

developed in HDLs (such as VHDL or Verilog).

– Recently, other methods of IP creation have also been 

introduced to Vivado, such as High Level Synthesis (HLS).

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 12



Key Steps of ARM-FPGA Integration

• PART 1: IP Block Design (using Xilinx Vivado)

 Create and Package the PL logic blocks into intellectual 

property (IP) block with AXI4 Interface.

• With AXI4, data can be exchanged via shared 32-bit registers.

 Integrate the customized (or pre-developed) IP block with 

ZYNQ7 Processing System (PS) via IP Block Design.

• Vivado can auto-connect IP block and ARM core via AXI interface.

 Create HDL Wrapper and Add Constraints to 

automatically generate the HDL code (VHDL or Verilog).

 Generate and Program Bitstream into the board.

• PART 2: ARM Programming (using Xilinx SDK)

 Design the bare-metal application in C/C++ language.

 Launch on Hardware (GDB): Run the code on ARM core.

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 13



Outline

• Rapid Prototyping with Zynq

• Rapid Prototyping (I): Integration of ARM and FPGA

– PART 1: IP Block Design (Xilinx Vavido)

 IP Block Creation

 IP Integration

 HDL Wrapper

 Generate Bitstream

– PART 2: ARM Programming (Xilinx SDK)

 ARM Programming

 Launch on Hardware

• Case Study: Software Stopwatch

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 14



Case Study: Stopwatch

Task: Count down from the input number (XY) to (00)

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 15

entity stopwatch is
port(    clk: in STD_LOGIC;

switch: in STD_LOGIC_VECTOR (7 downto 0);
btn: in STD_LOGIC_VECTOR (4 downto 0);
led: out STD_LOGIC_VECTOR (7 downto 0);
ssd: out STD_LOGIC_VECTOR (6 downto 0);

ssdsel: out STD_LOGIC );
end stopwatch;



Hardware vs. Software Stopwatch

• We can build a hardware stopwatch in which the 

FPGA (PL) is responsible for both:

– Interfacing with hardware (clk/switch/btn /led/PmodSSD); 

– Generating the values to be shown on led/PmodSSD based 

on user inputs or events.

• In Lab 07, we are going to develop a software 

stopwatch through ARM-FPGA integration:

– Hardware: FPGA (PL) is only responsible for hardware 

interfacing with clk/switch/btn/led/PmodSSD.

• We can reuse the hardware interfacing for different designs.

– Software: ARM (PS) determines the values to be shown on 

led/PmodSSD based on user inputs or events.

• We can easily realize a complex control logic via ARM programming.

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 16



• Hardware: The stopwatch IP block is responsible for 

hardware interfacing with clk/switch/btn/led/PmodSSD.

• Software: The ARM processor determines the values to be 

shown on led and PmodSSD based on user inputs or events.

• The ARM processor communicates with the IP block via the 

AXI slave registers.

Overall Design of Software Stopwatch

17

Our IP

SSD 

Controller
AXI

Interface ARM 

Processor

clk

btn

[0…4]

switch 

[0…7]

led 

[0…7]

ssd

[0…6]

ssdcat

slv_reg0

slv_reg1

ssd_value s_slv_reg0

s_slv_reg1

s_slv_reg2

s_slv_reg3

s_slv_reg4

slv_reg2

slv_reg3

timer

ssd_out

led_out

switch_in

btn_in

timer_in

clk

Timer (ms)

ssd.vhd *S00_AXI.vhd

stopwatch_controller_v1_0.vhd stopwatch.c

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2



• Five AXI slave registers are used for data exchange:

– s_slv_reg0: value to be displayed on the Pmod SSD ()

– s_slv_reg1: value to be displayed on the LEDs ()

– s_slv_reg2: value inputted from the switches (→)

– s_slv_reg3: value inputted from the buttons (→)

– s_slv_reg4: the number of milliseconds elapsed (→)

PART 1: IP Block Design

18

Our IP

SSD 

Controller
AXI

Interface ARM 

Processor

clk

btn

[0…4]

switch 

[0…7]

led 

[0…7]

ssd

[0…6]

ssdcat

slv_reg0

slv_reg1

ssd_value s_slv_reg0

s_slv_reg1

s_slv_reg2

s_slv_reg3

s_slv_reg4

slv_reg2

slv_reg3

timer

ssd_out

led_out

switch_in

btn_in

timer_in

clk

Timer (ms)

ssd.vhd *S00_AXI.vhd

stopwatch_controller_v1_0.vhd stopwatch.c

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2



 IP Block Creation: New IP

• According to our design specification, we need to 

have five AXI registers for exchanging data:

• Two .vhd templates will be generated automatically:

– stopwatch_controller_v1_0.vhd: This file instantiates the 

AXI-Lite interface and contain the required functionality.

– stopwatch_controller_v1_0_S00_AXI.vhd: This file 

contains only the AXI-Lite bus functionality.

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 19



Our IP

 IP Block Creation: Implementation (1/2)

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 20

SSD 

Controller
AXI

Interface ARM 

Processor

clk

btn

[0…4]

switch 

[0…7]

led 

[0…7]

ssd

[0…6]

ssdcat

slv_reg0

slv_reg1

ssd_value s_slv_reg0

s_slv_reg1

s_slv_reg2

s_slv_reg3

s_slv_reg4

slv_reg2

slv_reg3

timer

ssd_out

led_out

switch_in

btn_in

timer_in

clk

Timer (ms)

ssd.vhd *S00_AXI.vhd

stopwatch_controller_v1_0.vhd stopwatch.c

• stopwatch_controller_v1_0.vhd:

– Define the design interface, implement the required functionality 

(including ssd.vhd for Pmod SSD), and instantiate the AXI interface.

• stopwatch_controller_v1_0_S00_AXI.vhd:

– Describe a five-register AXI interface for this IP block.

(Note: Please refer to the lab sheet for detailed instructions.)



 IP Block Creation: Implementation (2/2)

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 21

-- get the ssd and led values from ARM processor for display ()
ssd_value <= slv_reg0(7 downto 0); -- pass to ssd_controller
led <= slv_reg1(7 downto 0); -- light up led
-- pass switch, btn, timer values to ARM processor for processing (→)
slv_reg2 <= (C_S00_AXI_DATA_WIDTH-1 downto 8 => ‘0’) & switch;
slv_reg3 <= (C_S00_AXI_DATA_WIDTH-1 downto 5 => '0') & btn;
process( clk, ms_count, timer )
begin 
if ( rising_edge(clk) ) then
if (ms_count = C_MS_LIMIT-1) then
ms_count <= (OTHERS => '0');
timer <= timer + 1; -- ms

else
...

stopwatch_controller_v1_0_S00_AXI
port map (
s_slv_reg0 => slv_reg0, -- ssd
s_slv_reg1 => slv_reg1, -- led
s_slv_reg2 => slv_reg2, -- sw
s_slv_reg3 => slv_reg3, -- btn
s_slv_reg4 => timer );  -- clk

ssd_controller
generic map (
cat_period => C_MS_LIMIT )

port map (
clk => clk,
value => ssd_value,
ssd => ssd,
ssdcat => ssdcat );



 IP Block Creation: IP Packaging

• Vivado IP Packager 

enables developers 

to quickly prepare IP 

for integration in the 

Vivado IP Catalog.

• Once the IP is 

selected in a Vivado

project, the IP is 

treated like any 

other IP module 

from the IP Catalog. 

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 22



• Vivado IP Integrator provides a graphical “canvas” to 

configure IP blocks in an automated development flow.

 IP Integration

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 23

↑ external ports

external

ports

↓

Vivado will help auto-connect

the stopwatch_controller IP 

with the ARM processor via 

AXI interface.



 HDL Wrapper &  Generate Bitstream

• Vivado will also help 

to create a top-level 

HDL Wrapper.

– This will automatically 

generate the VHDL 

code for the whole 

block design.

• With a constraint file, 

the Bitstream can be 

generated and 

downloaded into the 

targeted board.

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 24

HDL Wrapper

.vhd

wrapper

Program

Bitstream



PART 2: ARM Programming

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 25

Our IP

SSD 

Controller
AXI

Interface ARM 

Processor

clk

btn

[0…4]

switch 

[0…7]

led 

[0…7]

ssd

[0…6]

ssdcat

slv_reg0

slv_reg1

ssd_value s_slv_reg0

s_slv_reg1

s_slv_reg2

s_slv_reg3

s_slv_reg4

slv_reg2

slv_reg3

timer

ssd_out

led_out

switch_in

btn_in

timer_in

clk

Timer (ms)

ssd.vhd *S00_AXI.vhd

stopwatch_controller_v1_0.vhd stopwatch.c

• Five AXI slave registers are used for data exchange:

– s_slv_reg0: value to be displayed on the Pmod SSD ()

– s_slv_reg1: value to be displayed on the LEDs ()

– s_slv_reg2: value inputted from the switches (→)

– s_slv_reg3: value inputted from the buttons (→)

– s_slv_reg4: the number of milliseconds elapsed (→)



 ARM Programming

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 26

• We need two header files: one for controlling the 

ZYNQ processor in general, and the other to bring in 

items specific to our stopwatch controller.
#include “xparameters.h” // it is auto-generated

#include “stopwatch_controller.h” // it is auto-generated

• Then, we can make some simple names for the 

addresses of the registers in our IP block.
#define SW_BASE XPAR_STOPWATCH_CONTROLLER_0_S00_AXI_BASEADDR

#define SSD_ADDR STOPWATCH_CONTROLLER_S00_AXI_SLV_REG0_OFFSET

#define LED_ADDR STOPWATCH_CONTROLLER_S00_AXI_SLV_REG1_OFFSET

...

• Finally, we create a bare metal software program.

– There is nothing but a sole program running on the ARM.

– Thus, the program should never ever exit. (How?)



CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2

Key: Interfacing via Registers (1/3)
/*** STATES ***/
u32 stopped, btn_in_prev, switch_in_pre, timer_zero;
// logic for initializing internal states
while(1) // infinite loop
{

/*** INPUT ***/
btn_in = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, BTN_ADDR);
switch_in = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, SWITCH_ADDR);
timer_in = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, TIMER_ADDR);

/*** CONTROL ***/
// logic for detecting btn and switch events
// logic for determining the time for led and ssd display
int time_display;

/*** OUTPUT ***/
STOPWATCH_CONTROLLER_mWriteReg(SW_BASE, LED_ADDR, time_display);
STOPWATCH_CONTROLLER_mWriteReg(SW_BASE, SSD_ADDR, time_display);

/*** FEEDBACK ***/
btn_in_prev = btn_in; // btn_in_prev keeps previous btn
switch_in_prev = switch_in; // switch_in_prev keeps previous sw

}
27



Key: Interfacing via Registers (2/3)

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 28

/* CONTROL: btn */
// determine whether BTN_C is pressed?
u32 btn_rise = ~btn_in_prev & btn_in;
if (btn_rise & BTN_C) stopped = ( stopped==1? 0 : 1);

/* CONTROL: switch */
// determine whether any of switches has been changed?
if (switch_in != switch_in_prev) stopped = 1;

CDRUL
btn_in_prev 00000



~btn_in_prev 11111
&)   btn_in 10000
----------------------

btn_rise 10000

#define BTN_C 16
#define BTN_D 8
#define BTN_R 4
#define BTN_U 2
#define BTN_L 1

CDRUL
btn_in_prev 10000



~btn_in_prev 01111
&)   btn_in 01000
----------------------

btn_rise 01000

switch_in_prev 0000 0000
compare)      switch_in 0010 0000
---------------------------------

TRUE (otherwise: FALSE)

rising not rising



/* CONTROL: time */
int time_display; // the “remaining” time for display
if( stopped )
{

// reset time_display by switches and timer_zero by current time
time_display = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, SWITCH_ADDR);
timer_zero = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, TIMER_ADDR);

}else
{

// calculate the “elapsed” and “remaining” time (in seconds)
u32 time_elapsed = (timer_in - timer_zero) / 1000; // “elapsed”
time_display = switch_in - time_elapsed; // “remaining”
if(time_display < 0)
{

// reset timer_zero by the “current” time to restart count-down
timer_zero = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, TIMER_ADDR);

}
}

switch

Key: Interfacing via Registers (3/3)

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 29

zero

current
(timer_in)

elapsed remaining

reset

new
zero

reset



Class Exercise 7.1

• The stopwatch originally counts down at the rate of 

one number per second (1 Hz). Modify the high-

lighted line to let it count-down at the rate of 0.5 Hz.

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 30

Student ID: 

Name:

Date:

/* CONTROL: time */
int time_display; // the “remaining” time for display
if( stopped )
{

// reset time_display by switches and timer_zero by current time
time_display = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, SWITCH_ADDR);
timer_zero = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, TIMER_ADDR);

}else
{

// calculate the “elapsed” and “remaining” time (in seconds)
u32 time_elapsed = (timer_in - timer_zero) / 1000; // “elapsed”
time_display = switch_in - time_elapsed; // “remaining”
if(time_display < 0)
{

// reset timer_zero by the “current” time to restart count-down
timer_zero = STOPWATCH_CONTROLLER_mReadReg(SW_BASE, TIMER_ADDR);

}
}



 Launch on Hardware (GDB)

• Finally, after the software stopwatch (.c) is ready, you 

can run it on ARM by Launch on Hardware (GDB).

– GDB: GNU Debugger is the most popular debugger for 

UNIX systems to debug C and C++ programs.

– Vivado will help automatically compile, link, and load your C 

program.

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 32



Summary of ARM-FPGA Integration

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 33

Open VIVADO

Create New Project

Create & Package New IP

Create New Block Design

Add PS7 and other New IPs

Configure IPs

Run Connection Automation

Run Block Automation

Validate Design

Create HDL Wrapper

Generate Bitstream

Export Hardware to SDK

Add IP Repository into SDK

Create Board Support Package

Create New ‘C’ Application

Write ‘C’ Code

Build the Application (auto)

Configure FPGA

Run on Hardware (GDB)



Summary

• Rapid Prototyping with Zynq

• Rapid Prototyping (I): Integration of ARM and FPGA

– PART 1: IP Block Design (Xilinx Vavido)

 IP Block Creation

 IP Integration

 HDL Wrapper

 Generate Bitstream

– PART 2: ARM Programming (Xilinx SDK)

 ARM Programming

 Launch on Hardware

• Case Study: Software Stopwatch

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 34


